Skip to content

nonparametric

bin_map(hdu, rbins, x0=None, y0=None, cunit=None)

Radially bin a map into rbins. Code adapted from CLASS

Parameters:

Name Type Description Default
hdu HDUList

hdu containing map to bin

required
rbins NDArray[floating]

Bin edges in radians

required
cunit Union[None, np.floating], Default: None

Pixel units. If None, will atempt to infer from imap

None

Returns:

Name Type Description
bin1d NDArray[floating]

Bin center values

var1d NDArray[floating]

Bin variance estimate

Source code in witch/nonparametric.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
def bin_map(hdu, rbins, x0=None, y0=None, cunit=None):
    """
    Radially bin a map into rbins. Code adapted from CLASS

    Parameters
    ----------
    hdu : fits.HDUList
        hdu containing map to bin
    rbins : NDArray[np.floating]
        Bin edges in radians
    cunit : Union[None, np.floating], Default: None
        Pixel units. If None, will atempt to infer from imap

    Returns
    -------
    bin1d : NDArray[np.floating]
        Bin center values
    var1d : NDArray[np.floating]
        Bin variance estimate
    """

    if cunit is None:
        try:
            cunit = hdu[0].header["CUNIT1"].lower()
        except KeyError as e:
            raise e

    if (
        cunit.lower() == "rad"
        or cunit.lower() == "radian"
        or cunit.lower() == "radians"
    ):
        pixunits = 1
    elif (
        cunit.lower() == "deg"
        or cunit.lower() == "degree"
        or cunit.lower() == "degrees"
    ):
        pixunits = wu.rad_to_deg
    elif (
        cunit.lower() == "arcmin"
        or cunit.lower() == "arcminute"
        or cunit.lower() == "arcminutes"
    ):
        pixunits = wu.rad_to_arcmin
    elif (
        cunit.lower() == "arcsec"
        or cunit.lower() == "arcsecond"
        or cunit.lower() == "arcseconds"
    ):
        pixunits = wu.rad_to_arcsec
    else:
        raise ValueError("Error: cunit {} is not a valid pixel unit".format(cunit))

    pixsize = np.abs(hdu[0].header["CDELT1"]) / pixunits
    x0 = hdu[0].header["CRVAL1"] / pixunits
    y0 = hdu[0].header["CRVAL2"] / pixunits

    if np.abs(hdu[0].header["CDELT1"]) != np.abs(hdu[0].header["CDELT2"]):
        warnings.warn(
            "Warning: non-square pixels: RA: {} Dec{}".format(
                np.abs(hdu[0].header["CDELT1"]), np.abs(hdu[0].header["CDELT2"])
            )
        )

    # The offset is redundent if the binning center is taken to be the map center but frequently it is not
    x = np.linspace(
        -hdu[0].data.shape[1] / 2 * pixsize + hdu[0].header["CRVAL1"] / pixunits,
        hdu[0].data.shape[1] / 2 * pixsize + hdu[0].header["CRVAL1"] / pixunits,
        hdu[0].data.shape[1],
    )
    y = np.linspace(
        -hdu[0].data.shape[0] / 2 * pixsize + hdu[0].header["CRVAL2"] / pixunits,
        hdu[0].data.shape[0] / 2 * pixsize + hdu[0].header["CRVAL2"] / pixunits,
        hdu[0].data.shape[0],
    )

    X, Y = np.meshgrid(x, y)
    R = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
    rbins = rbins.append(999999)
    bin1d = np.zeros(len(rbins) - 1)
    var1d = np.zeros(len(rbins) - 1)

    for k in range(len(rbins) - 1):
        pixels = [
            hdu[0].data[i, j]
            for i in range(len(y))
            for j in range(len(x))
            if rbins[k] < R[i, j] <= rbins[k + 1]
        ]
        bin1d[k] = np.mean(pixels)
        var1d[k] = np.var(pixels)

    return bin1d, var1d

broken_power(rs, condlist, rbins, amps, pows, c)

Function which returns a broken powerlaw evaluated at rs.

Parameters:

rs : jax.Array Array of rs at which to compute pl. condlist : tuple tuple which enocdes which rs are evaluated by which parametric function rbins : jax.Array Array of bin edges for power laws amps : jax.Array Amplitudes of power laws pows : jax.Array Exponents of power laws c : float Constant offset for powerlaws

Source code in witch/nonparametric.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
@jax.jit
def broken_power(
    rs: jax.Array,
    condlist: tuple,
    rbins: jax.Array,
    amps: jax.Array,
    pows: jax.Array,
    c: float,
) -> jax.Array:
    """
    Function which returns a broken powerlaw evaluated at rs.

    Parameters:
    -----------
    rs : jax.Array
        Array of rs at which to compute pl.
    condlist : tuple
        tuple which enocdes which rs are evaluated by which parametric function
    rbins : jax.Array
        Array of bin edges for power laws
    amps : jax.Array
        Amplitudes of power laws
    pows : jax.Array                                                                                                                                                                                                                                                                            Exponents of power laws
    c : float
        Constant offset for powerlaws
    """
    cur_c = c  # TODO: necessary?
    funclist = []
    for i in range(len(condlist) - 1, -1, -1):
        funclist.append(
            partial(power, rbin=rbins[i + 1], cur_amp=amps[i], cur_pow=pows[i], c=cur_c)
        )
        cur_c += amps[i] * (rbins[i] ** pows[i] - rbins[i + 1] ** pows[i])
    return jnp.piecewise(rs, condlist, funclist)

power(x, rbin, cur_amp, cur_pow, c)

Function which returns the powerlaw, given the bin-edge constraints. Exists to be partialed.

Parameters:

x : float Dummy variable to be partialed over rbin : float Edge of bin for powerlaw cur_amp : float Amplitude of power law cur_pow : float Power of power law c : float Constant offset

Returns:

Name Type Description
tmp float

Powerlaw evaluated at x

Source code in witch/nonparametric.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
@jax.jit
def power(x, rbin, cur_amp, cur_pow, c):
    """
    Function which returns the powerlaw, given the bin-edge constraints. Exists to be partialed.

    Parameters:
    -----------
    x : float
        Dummy variable to be partialed over
    rbin : float
        Edge of bin for powerlaw
    cur_amp : float
        Amplitude of power law
    cur_pow : float
        Power of power law
    c : float
        Constant offset

    Returns
    -------
    tmp : float
        Powerlaw evaluated at x
    """
    tmp = cur_amp * (x**cur_pow - rbin**cur_pow) + c
    return tmp