fitting
fit_dataset(model, dataset, maxiter=10, chitol=1e-05, mode='tod')
Fit a model to TODs. This uses a modified Levenberg–Marquardt fitter with flat priors. This function is MPI aware.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model object that defines the model and grid we are fitting with. |
required |
dataset
|
TODVec | SolutionSet
|
The data to fit.
The |
required |
maxiter
|
int
|
The maximum number of iterations to fit. |
10
|
chitol
|
float
|
The delta chisq to use as the convergence criteria. |
1e-5
|
mode
|
str
|
The type of data we compile this function for. Should be either "tod" or "map". |
"tod"
|
Returns:
Name | Type | Description |
---|---|---|
model |
Model
|
Model with the final set of fit parameters, errors, and chisq. |
final_iter |
int
|
The number of iterations the fitter ran for. |
delta_chisq |
float
|
The final delta chisq. |
Source code in witch/fitting.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
|
get_chisq(model, dataset, mode='tod')
Get the chi-squared of a model given data. This is an MPI aware function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model object we are using to fit. |
required |
dataset
|
TODVec | SolutionSet
|
The data to fit against. This is what we use to compute our fit residuals. |
required |
mode
|
str
|
The type of data we compile this function for. Should be either "tod" or "map". |
"tod"
|
Returns:
Name | Type | Description |
---|---|---|
chisq |
Array
|
The chi-squared of the model. |
Source code in witch/fitting.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
get_grad(model, dataset, mode='tod')
Get the gradient of chi-squared of a model given a set of TODs. This is an MPI aware function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model object we are using to fit. |
required |
dataset
|
TODVec | SolutionSet
|
The data to fit against. This is what we use to compute our fit residuals. |
required |
mode
|
str
|
The type of data we compile this function for. Should be either "tod" or "map". |
"tod"
|
Returns:
Name | Type | Description |
---|---|---|
grad |
Array
|
The gradient of the parameters at there current values.
This is a |
Source code in witch/fitting.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
hmc(params, log_prob, log_prob_grad, num_steps, num_leaps, step_size, comm, key)
Runs Hamilonian Monte Carlo using a leapfrog integrator to approximate Hamilonian dynamics. This is a naive implementaion that will be replaced in the future.
The parallelism model employed here is different that most samplers where each task runs a subset of the chain, instead since the rest of WITCH employs a model where the data is distributed across tasks we do that here as well. In this model the chain evolves simultaneously in all tasks, but only rank 0 actually stores the chain.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Array
|
The initial parameters to start the chain at. |
required |
log_prob
|
Callable[[Array], Array]
|
Function that returns the log probability of the model
for a given set of params. This should take |
required |
log_prob_grad
|
Callable[[Array], Array]
|
Function that returns the gradient log probability of the model
for a given set of params. This should take |
required |
num_steps
|
int
|
The number of steps to run the chain for. |
required |
num_leaps
|
int
|
The number of leapfrog steps to run at each step of the chain. |
required |
step_size
|
float
|
The step size to use.
At each leapfrog step the parameters will evolve by |
required |
comm
|
Intracomm
|
The MPI comm object to use. |
required |
Returns:
Name | Type | Description |
---|---|---|
chain |
Array
|
The chain of samples.
Will have shape |
Source code in witch/fitting.py
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
|
invsafe(matrix, thresh=1e-14)
Safe SVD based psuedo-inversion of the matrix. This zeros out modes that are too small when inverting. Use with caution in cases where you really care about what the inverse is.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix
|
Array
|
The matrix to invert.
Should be a |
required |
thresh
|
float
|
Threshold at which to zero out a mode. |
1e-14
|
Returns:
Name | Type | Description |
---|---|---|
invmat |
Array
|
The inverted matrix.
Same shape as |
Source code in witch/fitting.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|
invscale(matrix, thresh=1e-14)
Invert and rescale a matrix by the diagonal.
This uses invsafe
for the inversion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
Parameters
|
|
required | |
matrix
|
Array
|
The matrix to invert and sxane.
Should be a |
required |
thresh
|
float
|
Threshold for |
1e-14
|
Returns:
Name | Type | Description |
---|---|---|
invmat |
Array
|
The inverted and rescaled matrix.
Same shape as |
Source code in witch/fitting.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
objective(pars, model, dataset, errs, mode='tod')
Objective function to minimize when fitting. This is also responsible for updating our model with the current guess. This is an MPI aware function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pars
|
Array
|
New parameters for our model. |
required |
model
|
Model
|
The model object we are using to fit. |
required |
dataset
|
TODVec | SolutionSet
|
The data to fit against. This is what we use to compute our fit residuals. |
required |
errs
|
Array
|
The error on |
required |
mode
|
str
|
The type of data we compile this function for. Should be either "tod" or "map". |
"tod"
|
Returns:
Name | Type | Description |
---|---|---|
new_model |
Model
|
An updated model object.
This contains the newly computed |
grad |
Array
|
The gradient of the parameters at there current values.
This is a |
curve |
Array
|
The curvature of the parameter space at the current values.
This is a |
Source code in witch/fitting.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
run_mcmc(model, dataset, num_steps=5000, num_leaps=10, step_size=0.02, sample_which=-1, mode='tod')
Run MCMC using the emcee
package to estimate the posterior for our model.
Currently this function only support flat priors, but more will be supported
down the line. In order to ensure accuracy of the noise model used, it is
reccomended that you run at least one round of fit_tods
followed by noise
reestimation before this function.
This is MPI aware. Eventually this will be replaced with something more jaxy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model to run MCMC on. We expect that all parameters in this model have priors defined. |
required |
dataset
|
TODVec | SolutionSet
|
The data to compute the likelihood of the model with. |
required |
num_steps
|
int
|
The number of steps to run MCMC for. |
5000
|
num_leaps
|
int
|
The number of leapfrog steps to take at each sample. |
10
|
step_size
|
float
|
The step size to use in the leapfrog algorithm. This should be tuned to get an acceptance fraction of ~.65. |
0.02
|
default
|
float
|
The step size to use in the leapfrog algorithm. This should be tuned to get an acceptance fraction of ~.65. |
0.02
|
sample_which
|
int
|
Sets which parameters to sample.
If this is >= 0 then we will sample which ever parameters were
fit in that round of fitting.
If this is -1 then we will sample which ever parameters were fit
in the last round of fitting.
If this is -2 then any parameters that were ever fit will be sampled.
If this is <= -3 or >= |
-1,
|
mode
|
str
|
The type of data to run this function on. Should be either "tod" or "map". |
"tod"
|
Returns:
Name | Type | Description |
---|---|---|
model |
Model
|
The model with MCMC estimated parameters and errors. The parameters are estimated as the mean of the samples. The errors are estimated as the standard deviation. This also has the chi-squared of the estimated parameters. |
flat_samples |
Array
|
Array of samples from running MCMC. |
Source code in witch/fitting.py
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
|