fitting
fit_dataset(model, dataset, maxiter=10, chitol=1e-05)
Fit a model to TODs. This uses a modified Levenberg–Marquardt fitter with flat priors. This function is MPI aware.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model object that defines the model and grid we are fitting with. |
required |
dataset
|
DataSet
|
The dataset to fit.
The |
required |
maxiter
|
int
|
The maximum number of iterations to fit. |
10
|
chitol
|
float
|
The delta chisq to use as the convergence criteria. |
1e-5
|
Returns:
Name | Type | Description |
---|---|---|
model |
Model
|
Model with the final set of fit parameters, errors, and chisq. |
final_iter |
int
|
The number of iterations the fitter ran for. |
delta_chisq |
float
|
The final delta chisq. |
Source code in witch/fitting.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
hmc(params, log_prob, log_prob_grad, num_steps, num_leaps, step_size, comm, key)
Runs Hamilonian Monte Carlo using a leapfrog integrator to approximate Hamilonian dynamics. This is a naive implementaion that will be replaced in the future.
The parallelism model employed here is different that most samplers where each task runs a subset of the chain, instead since the rest of WITCH employs a model where the data is distributed across tasks we do that here as well. In this model the chain evolves simultaneously in all tasks, but only rank 0 actually stores the chain.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Array
|
The initial parameters to start the chain at. |
required |
log_prob
|
Callable[[Array], Array]
|
Function that returns the log probability of the model
for a given set of params. This should take |
required |
log_prob_grad
|
Callable[[Array], Array]
|
Function that returns the gradient log probability of the model
for a given set of params. This should take |
required |
num_steps
|
int
|
The number of steps to run the chain for. |
required |
num_leaps
|
int
|
The number of leapfrog steps to run at each step of the chain. |
required |
step_size
|
float
|
The step size to use.
At each leapfrog step the parameters will evolve by |
required |
comm
|
Intracomm
|
The MPI comm object to use. |
required |
Returns:
Name | Type | Description |
---|---|---|
chain |
Array
|
The chain of samples.
Will have shape |
Source code in witch/fitting.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
invsafe(matrix, thresh=1e-14)
Safe SVD based psuedo-inversion of the matrix. This zeros out modes that are too small when inverting. Use with caution in cases where you really care about what the inverse is.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix
|
Array
|
The matrix to invert.
Should be a |
required |
thresh
|
float
|
Threshold at which to zero out a mode. |
1e-14
|
Returns:
Name | Type | Description |
---|---|---|
invmat |
Array
|
The inverted matrix.
Same shape as |
Source code in witch/fitting.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
invscale(matrix, thresh=1e-14)
Invert and rescale a matrix by the diagonal.
This uses invsafe
for the inversion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
Parameters
|
|
required | |
matrix
|
Array
|
The matrix to invert and sxane.
Should be a |
required |
thresh
|
float
|
Threshold for |
1e-14
|
Returns:
Name | Type | Description |
---|---|---|
invmat |
Array
|
The inverted and rescaled matrix.
Same shape as |
Source code in witch/fitting.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
run_mcmc(model, dataset, num_steps=5000, num_leaps=10, step_size=0.02, sample_which=-1)
Run MCMC using the emcee
package to estimate the posterior for our model.
Currently this function only support flat priors, but more will be supported
down the line. In order to ensure accuracy of the noise model used, it is
reccomended that you run at least one round of fit_tods
followed by noise
reestimation before this function.
This is MPI aware. Eventually this will be replaced with something more jaxy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model to run MCMC on. We expect that all parameters in this model have priors defined. |
required |
dataset
|
DataSet
|
The dataset to compute the model posterior with.
The |
required |
num_steps
|
int
|
The number of steps to run MCMC for. |
5000
|
num_leaps
|
int
|
The number of leapfrog steps to take at each sample. |
10
|
step_size
|
float
|
The step size to use in the leapfrog algorithm. This should be tuned to get an acceptance fraction of ~.65. |
0.02
|
default
|
float
|
The step size to use in the leapfrog algorithm. This should be tuned to get an acceptance fraction of ~.65. |
0.02
|
sample_which
|
int
|
Sets which parameters to sample.
If this is >= 0 then we will sample which ever parameters were
fit in that round of fitting.
If this is -1 then we will sample which ever parameters were fit
in the last round of fitting.
If this is -2 then any parameters that were ever fit will be sampled.
If this is <= -3 or >= |
-1,
|
Returns:
Name | Type | Description |
---|---|---|
model |
Model
|
The model with MCMC estimated parameters and errors. The parameters are estimated as the mean of the samples. The errors are estimated as the standard deviation. This also has the chi-squared of the estimated parameters. |
flat_samples |
Array
|
Array of samples from running MCMC. |
Source code in witch/fitting.py
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
|