objective
Module for the objective functions used by LM fitting and MCMC. All objective functions should return a log-likelihood (modulo a DC offset) as well as the gradient and curvature of the log-likelihood with respect to the model parameters.
Note that everything in done in analogy to chi-squared so there is a factor of -2 applied as needed to the non chi-squared distributions.
chisq_objective(model, datavec, mode='tod', do_loglike=True, do_grad=True, do_curve=True)
Objective function to minimize when fitting a dataset where a Gaussian distribution is reasonible. This is an MPI aware function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model object we are using to fit. |
required |
datavec
|
TODVec | SolutionSet
|
The data to fit against. This is what we use to compute our fit residuals. |
required |
mode
|
str
|
The type of data we compile this function for. Should be either "tod" or "map". |
"tod"
|
do_loglike
|
bool
|
If True then we will compute the chi-squared between the model and the data. |
True
|
do_grad
|
bool
|
If True then compute the gradient of chi-squared with respect to the model parameters. |
True
|
do_curve
|
bool
|
If True than compute the curvature of chi-squared with respect to the model parameters. |
True
|
Returns:
Name | Type | Description |
---|---|---|
chisq |
Array
|
The chi-squared between the model and data.
If |
grad |
Array
|
The gradient of the parameters at there current values.
If |
curve |
Array
|
The curvature of the parameter space at the current values.
If |
Source code in witch/objective.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
joint_objective(models, datasets, n_datasets, do_loglike=True, do_grad=True, do_curve=True)
Compute the objective for multiple datasets in an MPI aware way.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
models
|
tuple[Model]
|
Tuple of |
required |
datasets
|
tuple[DataSet]
|
Tuple of |
required |
n_datasets
|
int
|
The number of datasets to fit. |
required |
do_loglike
|
bool
|
If True then we will compute the log-likelihood between the model and the data. |
True
|
do_grad
|
bool
|
If True then compute the gradient of chi-squared with respect to the model parameters. |
True
|
do_curve
|
bool
|
If True than compute the curvature of chi-squared with respect to the model parameters. |
True
|
Returns:
Name | Type | Description |
---|---|---|
loglike |
Array
|
The log-likelihood between the model and data.
If |
grad |
Array
|
The gradient of the parameters at there current values.
If |
curve |
Array
|
The curvature of the parameter space at the current values.
If |
Source code in witch/objective.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
poisson_objective(model, datavec, mode='tod', do_loglike=True, do_grad=True, do_curve=True)
Objective function to minimize when fitting a dataset where a Poisson distribution is reasonible. This is an MPI aware function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model object we are using to fit. |
required |
datavec
|
TODVec | SolutionSet
|
The data to fit against. This is what we use to compute our fit residuals. |
required |
mode
|
str
|
The type of data we compile this function for. Should be either "tod" or "map". |
"tod"
|
do_loglike
|
bool
|
If True then we will compute the log-likelihood between the model and the data. |
True
|
do_grad
|
bool
|
If True then compute the gradient of chi-squared with respect to the model parameters. |
True
|
do_curve
|
bool
|
If True than compute the curvature of chi-squared with respect to the model parameters. |
True
|
Returns:
Name | Type | Description |
---|---|---|
loglike |
Array
|
The log-likelihood between the model and data.
If |
grad |
Array
|
The gradient of the parameters at there current values.
If |
curve |
Array
|
The curvature of the parameter space at the current values.
If |
Source code in witch/objective.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
|