Skip to content

mapmaking

Functions that wrap useful minkasi recipes

get_grad_prior(todvec, mapset, gradmap, *args, **kwargs)

Make a gradient based prior from a map. This helps avoid errors due to sharp features.

Parameters:

Name Type Description Default
todvec TodVec

The TODs what we are mapmaking.

required
mapset Mapset

The mapset to compute priors with. We assume that the first element is the map we care about.

required
gradmap MapType

Containter to use as the gradient map.

required
*args Unpack[tuple]

Additional arguments to pass to get_grad_mask_2d.

()
**kwargs

Keyword arguments to pass to get_grad_mask_2d.

{}

Returns:

Name Type Description
new_mapset Mapset

A mapset with the original map and a cleared prior map.

Source code in witch/external/minkasi/mapmaking.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def get_grad_prior(
    todvec: minkasi.tods.TodVec,
    mapset: minkasi.maps.Mapset,
    gradmap: minkasi.maps.MapType,
    *args: Unpack[tuple],
    **kwargs,
) -> minkasi.maps.Mapset:
    """
    Make a gradient based prior from a map.
    This helps avoid errors due to sharp features.

    Parameters
    ----------
    todvec : minkasi.tods.TodVec
        The TODs what we are mapmaking.
    mapset : minkasi.maps.Mapset
        The mapset to compute priors with.
        We assume that the first element is the map we care about.
    gradmap : minkasi.maps.MapType
        Containter to use as the gradient map.
    *args : Unpack[tuple]
        Additional arguments to pass to get_grad_mask_2d.
    **kwargs
        Keyword arguments to pass to get_grad_mask_2d.

    Returns
    -------
    new_mapset : minkasi.maps.Mapset
        A mapset with the original map and a cleared prior map.
    """
    gradmap.map[:] = minkasi.mapmaking.noise.get_grad_mask_2d(
        mapset.maps[0], todvec, *args, **kwargs
    )
    prior = minkasi.mapmaking.timestream.tsModel(todvec, minkasi.tods.cuts.CutsCompact)
    for tod in todvec.tods:
        prior.data[tod.info["fname"]] = tod.prior_from_skymap(gradmap)
        print(
            "prior on tod "
            + tod.info["fname"]
            + " length is "
            + repr(prior.data[tod.info["fname"]].map.size)
        )

    new_mapset = minkasi.maps.Mapset()
    new_mapset.add_map(mapset.maps[0])
    pp = prior.copy()
    pp.clear()
    new_mapset.add_map(pp)

    return new_mapset

make_maps(todvec, skymap, noise_class, noise_args, noise_kwargs, outdir, npass, dograd, return_maps=False)

Make a minkasi map with multple passes and noise reestimation. Unless you are an expert this will usually be all you need.

Parameters:

Name Type Description Default
todvec TodVec

The tods to mapmake.

required
skymap MapType

Map to use as a template. The contents don't matter only the shape and WCS info.

required
noise_class NoiseModelType

The noise model to use on the TODs.

required
noise_args tuple

Arguments to pass to minkasi.tods.Tod.set_noise.

required
noise_kwargs dict

Keyword arguments to pass to minkasi.tods.Tod.set_noise.

required
outdir str

The output directory.

required
npass int

The number of times to mapmake and then reestimate the noise.

required
dograd bool

If True make a map based prior to avoid biases from sharp features.

required
return_maps bool

If True, return the mapset. Default; False

False
Source code in witch/external/minkasi/mapmaking.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def make_maps(
    todvec: minkasi.tods.TodVec,
    skymap: minkasi.maps.MapType,
    noise_class: minkasi.mapmaking.noise.NoiseModelType,
    noise_args: tuple,
    noise_kwargs: dict,
    outdir: str,
    npass: int,
    dograd: bool,
    return_maps: bool = False,
):
    """
    Make a minkasi map with multple passes and noise reestimation.
    Unless you are an expert this will usually be all you need.

    Parameters
    ----------
    todvec : minkasi.tods.TodVec
        The tods to mapmake.
    skymap : minkasi.maps.MapType
        Map to use as a template.
        The contents don't matter only the shape and WCS info.
    noise_class : minkasi.mapmaking.noise.NoiseModelType
        The noise model to use on the TODs.
    noise_args : tuple
        Arguments to pass to `minkasi.tods.Tod.set_noise`.
    noise_kwargs : dict
        Keyword arguments to pass to `minkasi.tods.Tod.set_noise`.
    outdir : str
        The output directory.
    npass : int
        The number of times to mapmake and then reestimate the noise.
    dograd : bool
        If True make a map based prior to avoid biases from sharp features.
    return_maps : bool
        If True, return the mapset. Default; False
    """
    for tod in todvec.tods:
        if "ipix" not in tod.info:
            ipix = skymap.get_pix(tod)
            tod.info["ipix"] = ipix
        if tod.noise is None:
            tod.set_noise(
                noise_class,
                tod.info["dat_calib"],
                *noise_args,
                **noise_kwargs,
            )

    naive, hits = make_naive(todvec, skymap, outdir)

    # Take 1 over hits map
    ihits = hits.copy()
    ihits.invert()

    # Save weights and noise maps
    _ = make_weights(todvec, skymap, outdir)

    # Setup the mapset
    # For now just include the naive map so we can use it as the initial guess.
    mapset = minkasi.maps.Mapset()
    mapset.add_map(naive)

    # run PCG to solve for a first guess
    iters = [5, 25, 100]
    mapset = solve_map(todvec, mapset, ihits, None, 26, iters, outdir, "initial")

    # Now we iteratively solve and reestimate the noise
    for niter in range(npass):
        maxiter = 26 + 25 * (niter + 1)
        reestimate_noise_from_map(todvec, mapset, noise_class, noise_args, noise_kwargs)

        # Make a gradient based prior
        if dograd:
            mapset = get_grad_prior(todvec, mapset, hits.copy(), thresh=1.8)
        # Solve
        mapset = solve_map(
            todvec, mapset, ihits, None, maxiter, iters, outdir, f"niter_{niter+1}"
        )

    minkasi.barrier()

    if return_maps:
        return mapset

make_naive(todvec, skymap, outdir)

Make a naive map where we just bin common mode subtracted TODs.

Parameters:

Name Type Description Default
todvec TodVec

The TODs to mapmake.

required
skymap MapType

Map to use as footprint for outputs.

required

Returns:

Name Type Description
naive MapType

The naive map.

hits MapType

The hit count map. We use this as a preconditioner which helps small-scale convergence quite a bit.

Source code in witch/external/minkasi/mapmaking.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def make_naive(
    todvec: minkasi.tods.TodVec, skymap: minkasi.maps.MapType, outdir: str
) -> tuple[minkasi.maps.MapType, minkasi.maps.MapType]:
    """
    Make a naive map where we just bin common mode subtracted TODs.

    Parameters
    ----------
    todvec : minkasi.tods.TodVec
        The TODs to mapmake.
    skymap : minkasi.maps.MapType
        Map to use as footprint for outputs.

    Returns
    -------
    naive : minkasi.maps.MapType
        The naive map.
    hits : minkasi.maps.MapType
        The hit count map.
        We use this as a preconditioner which helps small-scale convergence quite a bit.
    """
    hits = minkasi.mapmaking.make_hits(todvec, skymap)

    # Make a naive map where we just bin the CM subbed tods
    naive = skymap.copy()
    naive.clear()
    for tod in todvec.tods:
        tmp = tod.info["dat_calib"].copy()
        u, s, v = np.linalg.svd(tmp, False)
        tmp -= np.outer(u[:, 0], s[0] * v[0, :])
        naive.tod2map(tod, tmp)
    naive.mpi_reduce()
    naive.map[hits.map > 0] = naive.map[hits.map > 0] / hits.map[hits.map > 0]
    if minkasi.myrank == 0:
        naive.write(os.path.join(outdir, "naive.fits"))
        hits.write(os.path.join(outdir, "hits.fits"))
    naive.clear()
    return naive, hits

make_weights(todvec, skymap, outdir)

Make weights and noise map.

Parameters:

Name Type Description Default
todvec TodVec

The TODs to mapmake.

required
skymap MapType

Map to use as footprint for outputs.

required

Returns:

Name Type Description
weightmap MapType

The weights map.

noisemap MapType

The noise map. This is just 1/sqrt(weights).

Source code in witch/external/minkasi/mapmaking.py
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def make_weights(
    todvec: minkasi.tods.TodVec, skymap: minkasi.maps.MapType, outdir: str
) -> tuple[minkasi.maps.MapType, minkasi.maps.MapType]:
    """
    Make weights and noise map.

    Parameters
    ----------
    todvec : minkasi.tods.TodVec
        The TODs to mapmake.
    skymap : minkasi.maps.MapType
        Map to use as footprint for outputs.

    Returns
    -------
    weightmap : minkasi.maps.MapType
        The weights map.
    noisemap : minkasi.maps.MapType
        The noise map.
        This is just 1/sqrt(weights).
    """
    weightmap = minkasi.mapmaking.make_hits(todvec, skymap, do_weights=True)
    mask = weightmap.map > 0
    tmp = weightmap.map.copy()
    tmp[mask] = 1.0 / np.sqrt(tmp[mask])
    noisemap = weightmap.copy()
    noisemap.map[:] = tmp
    if minkasi.myrank == 0:
        noisemap.write(os.path.join(outdir, "noise.fits"))
        weightmap.write(os.path.join(outdir, "weights.fits"))

    return weightmap, noisemap

reestimate_noise_from_map(todvec, mapset, noise_class, noise_args, noise_kwargs)

Use the current guess at the map to reestimate the noise:

Parameters:

Name Type Description Default
todvec TodVec

The TODs to reestimate noise for.

required
mapset Mapset

Mapset containing the current map solution.

required
noise_class NoiseModelType

Which noise model to use.

required
noise_args tuple

Additional arguments to pass to minkasi.tods.Tod.set_noise.

required
noise_kwargs dict

Additional keyword arguments to pass to minkasi.tods.Tod.set_noise.

required
Source code in witch/external/minkasi/mapmaking.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def reestimate_noise_from_map(
    todvec: minkasi.tods.TodVec,
    mapset: minkasi.maps.Mapset,
    noise_class: minkasi.mapmaking.NoiseModelType,
    noise_args: tuple,
    noise_kwargs: dict,
):
    """
    Use the current guess at the map to reestimate the noise:

    Parameters
    ----------
    todvec : minkasi.tods.TodVec
        The TODs to reestimate noise for.
    mapset : minkasi.maps.Mapset
        Mapset containing the current map solution.
    noise_class : minkasi.mapmaking.NoiseModelType
        Which noise model to use.
    noise_args : tuple
        Additional arguments to pass to `minkasi.tods.Tod.set_noise`.
    noise_kwargs : dict
        Additional keyword arguments to pass to `minkasi.tods.Tod.set_noise`.
    """
    for tod in todvec.tods:
        mat = 0 * tod.info["dat_calib"]
        for mm in mapset.maps:
            mm.map2tod(tod, mat)
        tod.set_noise(
            noise_class,
            dat=tod.info["dat_calib"] - mat,
            *noise_args,
            **noise_kwargs,
        )

solve_map(todvec, x0, ihits, prior, maxiters, save_iters, outdir, desc_str)

Solve for map with PCG.

Parameters:

Name Type Description Default
todvec TodVec

The TODs what we are mapmaking.

required
x0 Mapset

The initial guess mapset.

required
ihits MapType

The inverse hits map.

required
prior Optional[HasPrior]

Prior to use when mapmaking, set to None to not use.

required
maxiters int

Maximum PCG iters to use.

required
save_iters list[int]

Which iterations to save the map at.

required
outdir str

The output directory

required
desc_str str

String used to determine outroot.

required

Returns:

Name Type Description
mapset Mapset

The mapset with the solved map.

Source code in witch/external/minkasi/mapmaking.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def solve_map(
    todvec: minkasi.tods.TodVec,
    x0: minkasi.maps.Mapset,
    ihits: minkasi.maps.MapType,
    prior: Optional[minkasi.mapmaking.pcg.HasPrior],
    maxiters: int,
    save_iters: list[int],
    outdir: str,
    desc_str: str,
) -> minkasi.maps.Mapset:
    """
    Solve for map with PCG.

    Parameters
    ----------
    todvec : minkasi.tods.TodVec
        The TODs what we are mapmaking.
    x0 : minkasi.maps.Mapset
        The initial guess mapset.
    ihits : minkasi.maps.MapType
        The inverse hits map.
    prior : Optional[minkasi.mapmaking.pgc.HasPrior]
        Prior to use when mapmaking, set to None to not use.
    maxiters : int
        Maximum PCG iters to use.
    save_iters : list[int]
        Which iterations to save the map at.
    outdir : str
        The output directory
    desc_str : str
        String used to determine outroot.

    Returns
    -------
    mapset : minkasi.maps.Mapset
        The mapset with the solved map.
    """
    # make A^T N^1 d.  TODs need to understand what to do with maps
    # but maps don't necessarily need to understand what to do with TODs,
    # hence putting make_rhs in the vector of TODs.
    # Again, make_rhs is MPI-aware, so this should do the right thing
    # if you run with many processes.
    rhs = x0.copy()
    todvec.make_rhs(rhs)

    # Preconditioner is 1/ hit count map.
    # Helps a lot for convergence.
    precon = x0.copy()
    precon.maps[0].map[:] = ihits.map[:]

    # run PCG to solve
    # Supressing print here, probably want a verbosity setting on the minkasi side...
    with open(os.devnull, "w") as f, contextlib.redirect_stdout(f):
        mapset = minkasi.mapmaking.run_pcg_wprior(
            rhs,
            x0,
            todvec,
            prior,
            precon,
            maxiter=maxiters,
            outroot=os.path.join(outdir, desc_str),
            save_iters=save_iters,
        )

    if minkasi.myrank == 0:
        mapset.maps[0].write(
            os.path.join(outdir, f"{desc_str}.fits")
        )  # and write out the map as a FITS file

    return mapset