nonparametric
bin_map(hdu, rbins, x0=None, y0=None, cunit=None)
Radially bin a map into rbins. Code adapted from CLASS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hdu
|
HDUList
|
hdu containing map to bin |
required |
rbins
|
NDArray[floating]
|
Bin edges in radians |
required |
cunit
|
Union[None, np.floating], Default: None
|
Pixel units. If None, will atempt to infer from imap |
None
|
Returns:
Name | Type | Description |
---|---|---|
bin1d |
NDArray[floating]
|
Bin center values |
var1d |
NDArray[floating]
|
Bin variance estimate |
Source code in witch/nonparametric.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
broken_power(rs, condlist, rbins, amps, pows, c)
Function which returns a broken powerlaw evaluated at rs.
Parameters:
rs : jax.Array Array of rs at which to compute pl. condlist : tuple tuple which enocdes which rs are evaluated by which parametric function rbins : jax.Array Array of bin edges for power laws amps : jax.Array Amplitudes of power laws pows : jax.Array Exponents of power laws c : float Constant offset for powerlaws
Source code in witch/nonparametric.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
get_rbins(model, rmax=3.0 * 60.0, struct_num=0, sig_params=['amp', 'P0'], default=(0, 10, 20, 30, 50, 80, 120, 180))
Function which returns a good set of rbins for a non-parametric fit given the significance of the underlying parametric model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
Parametric model to calculate rbins on |
required |
rmax
|
float
|
Maximum radius of the rbins |
180
|
struct_num
|
int, defualt: 0
|
Structure within model to calculate rbins on |
0
|
sig_params
|
list[str]
|
Parameters to consider for computing significance. Only first match will be used. |
['amp', 'P0']
|
default
|
tuple[int]
|
Default rbins to be returned if generation fails. |
(0, 10, 20, 30, 50, 80, 120, 180)
|
Returns:
Name | Type | Description |
---|---|---|
rbins |
tuple[int]
|
rbins for nonparametric fit |
Source code in witch/nonparametric.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
power(x, rbin, cur_amp, cur_pow, c)
Function which returns the powerlaw, given the bin-edge constraints. Exists to be partialed.
Parameters:
x : float Dummy variable to be partialed over rbin : float Edge of bin for powerlaw cur_amp : float Amplitude of power law cur_pow : float Power of power law c : float Constant offset
Returns:
Name | Type | Description |
---|---|---|
tmp |
float
|
Powerlaw evaluated at x |
Source code in witch/nonparametric.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
profile_to_broken_power(rs, ys, condlist, rbins)
Estimates a non-parametric broken power profile from a generic profile. Note this is an estimation only; in partciular since we fit piece-wise the c's get messed up. This broken powerlaw should then be fit to the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rs
|
ArrayLike
|
Array of radius values for the profile |
required |
ys
|
ArrayLike
|
Profile y values |
required |
condlist
|
list[ArrayLike]
|
List which defines which powerlaws map to which radii. See broken_power |
required |
rbins
|
ArrayLike
|
Array of bin edges defining the broken powerlaws |
required |
Returns:
Name | Type | Description |
---|---|---|
amps |
array
|
Best fit amps for the powerlaws |
pows |
array
|
Best fit powers for the powerlaws |
c |
float
|
Best fit c for only the outermost powerlaw |
Source code in witch/nonparametric.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|