Skip to content

plotting

plot_cluster(name, fits_path, root=None, pix_size=None, ra=None, dec=None, units='mJy', scale=1.0, cmap='mustang', bound=None, radius=2.0, plot_r=True, figsize=(6, 5), ncontours=0, hdu_int=0, downsample=1, smooth=9.0, convention='calabretta')

Function for doing core plotting. TODO: This function could probably use an args/kwargs, but there are an enourmous number of keyword args within so that might be difficult.

Parameters:

Name Type Description Default
name str

name of the cluster

required
fits_path str

Path to the fits file to be plotted.

required
root None | str

Path to the output root. If none, then it will assume WITCH output formating.

None
pix_size None | float

Pixel size. If None, then will be computed from results file.

None
ra None | float

RA of center of plot, in degrees. If none, will be taken from config

None
dec None | float, dfault: None

Dec of center of plot, in degrees. If none, will be taken from config

None
units str

String to be used as units. If snr, then it will autoformat to sigma

mJy
scale float

Amount to scale data by

1
bound None | float

Bounds for the colormap. If none, reasonable bounds will be computed.

None
radius float

Radius, in arcmin, of figure

2.0
plot_r bool | str

If true, plot r500. If a str, plot a related critical radius

True
figsize tuple[float, float]

Width and height of plot in inches.

(5,5)
ncontours int

Number of countours to be plotted

= 0
hdu_int int

Fits hdu corresponding to the image to be plotted

0
downsample int

Factor by which to downsample the image.

1
smooth float

Scale, in arcminutes, at which to smooth the image.

9.0
convention str

Determines interpretation of abigious fits headers. See aplpy.FITSFigure documentation

calabretta

Returns:

Name Type Description
img FITSFigure

FITSFigure plot of the cluster

Source code in witch/plotting.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def plot_cluster(
    name: str,
    fits_path: str,
    root: Optional[str] = None,
    pix_size: Optional[float] = None,
    ra: Optional[float] = None,
    dec: Optional[float] = None,
    units: str = "mJy",
    scale: float = 1.0,
    cmap: str = "mustang",
    bound: Optional[float] = None,
    radius: float = 2.0,
    plot_r=True,
    figsize: tuple[float, float] = (6, 5),
    ncontours: int = 0,
    hdu_int: int = 0,
    downsample: int = 1,
    smooth: float = 9.0,
    convention: str = "calabretta",
):
    """
    Function for doing core plotting.
    TODO: This function could probably use an args/kwargs, but there are an enourmous number of keyword args within so that might be difficult.

    Parameters
    ----------
    name : str
        name of the cluster
    fits_path : str
        Path to the fits file to be plotted.
    root : None | str, default: None
        Path to the output root. If none, then it will assume WITCH output formating.
    pix_size : None | float, default: None
        Pixel size. If None, then will be computed from results file.
    ra : None | float, default: None
        RA of center of plot, in degrees. If none, will be taken from config
    dec : None | float, dfault: None
        Dec of center of plot, in degrees. If none, will be taken from config
    units : str, default: mJy
        String to be used as units. If snr, then it will autoformat to sigma
    scale : float, default: 1
        Amount to scale data by
    bound : None | float, default: None
        Bounds for the colormap. If none, reasonable bounds will be computed.
    radius : float, default: 2.0
        Radius, in arcmin, of figure
    plot_r : bool | str, default: True
        If true, plot r500. If a str, plot a related critical radius
    figsize : tuple[float, float], default: (5,5)
        Width and height of plot in inches.
    ncontours : int, default = 0
        Number of countours to be plotted
    hdu_int : int, default: 0
        Fits hdu corresponding to the image to be plotted
    downsample : int, default: 1
        Factor by which to downsample the image.
    smooth : float, default: 9.0
        Scale, in arcminutes, at which to smooth the image.
    convention : str, default: calabretta
        Determines interpretation of abigious fits headers. See aplpy.FITSFigure documentation

    Returns
    -------
    img: aplpy.FITSFigure
        FITSFigure plot of the cluster
    """
    fits_path = os.path.abspath(fits_path)
    if root is None:
        root = os.path.split(os.path.split(fits_path)[0])[0]

    if pix_size is None:
        res_path = (
            root
            + "/"
            + str(sorted([file for file in os.listdir(root) if ".dill" in file])[-1])
        )
        with open(res_path, "rb") as f:
            results = pk.load(f)
        pix_size = results.pix_size * rad_to_arcsec

    if ra is None or dec is None:
        cfg_path = root + "/" + "config.yaml"
        cfg = load_config({}, cfg_path)
        ra = eval(cfg["coords"]["x0"])
        dec = eval(cfg["coords"]["y0"])
        ra, dec = np.rad2deg(
            [ra, dec]
        )  # TODO: Currently center on config center, which is fine but should probably be fit center

    smooth = max(
        1, int(smooth / pix_size)
    )  # FITSfigure smoothing is in pixels, so convert arcsec to pixels

    kernel = Gaussian2DKernel(x_stddev=smooth * 5)

    fig = plt.figure(figsize=figsize)

    hdu = fits.open(fits_path)[0]
    hdu.data *= scale

    plot_hdu = fits.PrimaryHDU(data=hdu.data, header=hdu.header)

    img = aplpy.FITSFigure(
        plot_hdu,
        hdu=hdu_int,
        figure=fig,
        downsample=downsample,
        smooth=False,
        convention=convention,
    )  # Smooth here does something whack
    img.set_theme("publication")

    if units is not None:
        if units == "snr":
            cbar_label = r"$\sigma$"
        elif units == "uK_cmb":
            # img._data /= 1.28
            # img._data *= 1e6
            cbar_label = r"$uK_{CMB}$"
        elif units == "uK_RJ":
            # img._data *= 1e6
            cbar_label = r"$uK_{RJ}"
        else:
            cbar_label = str(units)

    if bound is None:
        nx, ny = img._data.shape
        lims = int(radius * 60 / pix_size)
        xmin = int(nx / 2 - lims)
        xmax = int(nx / 2 + lims)
        ymin = int(ny / 2 - lims)
        ymax = int(ny / 2 + lims)
        bound = np.amax(np.abs(img._data[xmin:xmax, ymin:ymax]))
        order = int(np.floor(np.log10(bound)))
        bound = np.round(bound, -1 * order) / 2

    img.show_colorscale(cmap=cmap, stretch="linear", vmin=-bound, vmax=bound, smooth=3)
    img.recenter(ra, dec, radius=radius / 60.0)
    img.ax.tick_params(axis="both", which="both", direction="in")

    matplotlib.rcParams["lines.linewidth"] = 3.0
    img.add_scalebar(
        0.5 / 60.0, '30"', color="black"
    )  # Adds a 30 arcsec scalebar to the image

    matplotlib.rcParams["lines.linewidth"] = 2.0

    img.add_beam(
        major=9.0 / 3600.0, minor=9.0 / 3600.0, angle=0
    )  # TODO: For now hard-coded to M2 beam but may want some flexibility later
    img.beam.set_color("white")
    img.beam.set_edgecolor("green")
    img.beam.set_facecolor("white")
    img.beam.set_corner("bottom left")

    img.show_markers(
        ra,
        dec,
        facecolor="black",
        edgecolor=None,
        marker="+",
        s=50,
        linewidths=2,
        alpha=0.5,
    )
    if units is not None:
        img.add_colorbar("right")
        img.colorbar.set_width(0.12)
        img.colorbar.set_axis_label_text(cbar_label)

    if ncontours:
        matplotlib.rcParams["lines.linewidth"] = 0.5
        clevels = np.linspace(-bound, bound, ncontours)
        img.show_contour(
            fits_path,
            colors="gray",
            levels=clevels,
            returnlevels=True,
            convention="calabretta",
            smooth=3,
        )

    if plot_r:  # TODO: Allow passing of r500 values, make this a subfunction
        if "a10" in cfg["model"]["structures"].keys():
            mod_type = "a10"
        elif "ea10" in cfg["model"]["structures"].keys():
            mod_type = "ea10"
        else:
            raise ModelError("For R500, must have structure type A10 or EA10")

        for i in range(len(results.structures)):
            if str(results.structures[i].name) == mod_type:
                break

        for parameter in results.structures[i].parameters:
            if str(parameter.name.lower()) == "m500":
                m500 = parameter.val
                break

        z = float(cfg["constants"]["z"])
        nz = get_nz(z)

        r500 = (m500 / (4.00 * np.pi / 3.00) / 5.00e02 / nz) ** (1.00 / 3.00)
        da = get_da(z)
        r500 /= da
        if plot_r == "rs":
            r500 /= float(
                cfg["model"]["structures"][mod_type]["parameters"]["c500"]["value"]
            )  # Convert to rs
        img.show_circles(
            ra, dec, radius=r500 / 3600, coords_frame="world", color="green"
        )

    return img

plot_cluster_act(name, fits_path, cfg_path=None, ra=None, dec=None, units='mJy', bound=None, radius=2.0, plot_r=True, figsize=(5, 5), ncontours=0, hdu=0, downsample=1, smooth=60.0, convention='calabretta')

Function for doing core plotting. TODO: This function could probably use an args/kwargs, but there are an enourmous number of keyword args within so that might be difficult.

Parameters:

Name Type Description Default
name str

Name of the cluster

required
fits_path str

Path to the fits file to be plotted.

required
cfg_path None | str

Path to WITCH config file corresponding to same cluster

None
ra None | float

RA of center of plot, in degrees. If none, will be taken from config

None
dec None | float, dfault: None

Dec of center of plot, in degrees. If none, will be taken from config

None
units str

String to be used as units. If snr, then it will autoformat to sigma

mJy
bound None | float

Bounds for the colormap. If none, reasonable bounds will be computed.

None
radius float

Radius, in arcmin, of figure

2.0
plot_r bool | str

If true, plot r500. If a str, plot a related critical radius

True
figsize tuple[float, float]

Width and height of plot in inches.

(5,5)
ncontours int

Number of countours to be plotted

= 0
hdu int

Fits hdu corresponding to the image to be plotted

0
downsample int

Factor by which to downsample the image.

1
smooth float

Scale, in arcminutes, at which to smooth the image.

60.0
convention str

Determines interpretation of abigious fits headers. See aplpy.FITSFigure documentation

calabretta

Returns:

Name Type Description
img FITSFigure

FITSFigure plot of the cluster

Source code in witch/plotting.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def plot_cluster_act(
    name: str,
    fits_path: str,
    cfg_path: Optional[str] = None,
    ra: Optional[float] = None,
    dec: Optional[float] = None,
    units: str = "mJy",
    bound: Optional[float] = None,
    radius: float = 2.0,
    plot_r=True,
    figsize: tuple[float, float] = (5, 5),
    ncontours: int = 0,
    hdu: int = 0,
    downsample: int = 1,
    smooth: float = 60.0,
    convention: str = "calabretta",
):
    """
    Function for doing core plotting.
    TODO: This function could probably use an args/kwargs, but there are an enourmous number of keyword args within so that might be difficult.

    Parameters
    ----------
    name : str
        Name of the cluster
    fits_path : str
        Path to the fits file to be plotted.
    cfg_path : None | str, default: None
        Path to WITCH config file corresponding to same cluster
    ra : None | float, default: None
        RA of center of plot, in degrees. If none, will be taken from config
    dec : None | float, dfault: None
        Dec of center of plot, in degrees. If none, will be taken from config
    units : str, default: mJy
        String to be used as units. If snr, then it will autoformat to sigma
    bound : None | float, default: None
        Bounds for the colormap. If none, reasonable bounds will be computed.
    radius : float, default: 2.0
        Radius, in arcmin, of figure
    plot_r : bool | str, default: True
        If true, plot r500. If a str, plot a related critical radius
    figsize : tuple[float, float], default: (5,5)
        Width and height of plot in inches.
    ncontours : int, default = 0
        Number of countours to be plotted
    hdu : int, default: 0
        Fits hdu corresponding to the image to be plotted
    downsample : int, default: 1
        Factor by which to downsample the image.
    smooth : float, default: 60.0
        Scale, in arcminutes, at which to smooth the image.
    convention : str, default: calabretta
        Determines interpretation of abigious fits headers. See aplpy.FITSFigure documentation

    Returns
    -------
    img: aplpy.FITSFigure
        FITSFigure plot of the cluster
    """
    if cfg_path is not None:
        cfg = load_config({}, cfg_path)
        ra = eval(cfg["coords"]["x0"])
        dec = eval(cfg["coords"]["y0"])
        ra, dec = np.rad2deg(
            [ra, dec]
        )  # TODO: Currently center on config center, which is fine but should probably be fit center
    elif ra is None or dec is None:
        raise ValueError("Either cfg_path or both ra and dec must be specified.")
    cur_hdu = fits.open(fits_path)
    pix_size = cur_hdu[0].header["CDELT1"] * 3600

    smooth = max(
        1, int(smooth / pix_size)
    )  # FITSfigure smoothing is in pixels, so convert arcsec to pixels

    kernel = Gaussian2DKernel(x_stddev=smooth * 5)

    fig = plt.figure(figsize=figsize)
    img = aplpy.FITSFigure(
        fits_path,
        hdu=hdu,
        figure=fig,
        downsample=downsample,
        smooth=False,
        convention=convention,
    )  # Smooth here does something whack
    img.set_theme("publication")

    beam_fwhm = 2.2
    fwhm_to_sigma = 1.0 / (8 * np.log(2)) ** 0.5
    beam_sigma = beam_fwhm * fwhm_to_sigma
    omega_B = 2 * np.pi * beam_sigma**2

    if units == "snr":
        cbar_label = r"$\sigma$"
    elif units == "uK":
        img._data *= np.sqrt(omega_B)
        cbar_label = r"$uK_{CMB}$"
    else:
        cbar_label = str(units)

    cmap = "mymap"
    try:
        cm.get_cmap(
            cmap
        )  # Stops these anoying messages if you've already registered mymap

    except:
        bottom = cm.get_cmap("Oranges", 128)
        top = cm.get_cmap("Blues_r", 128)
        newcolors = np.vstack(
            (top(np.linspace(0, 1, 128)), bottom(np.linspace(0, 1, 128)))
        )
        cm.register_cmap(cmap, cmap=ListedColormap(newcolors))

    if bound is None:
        nx, ny = img._data.shape
        lims = int(radius * 60 / pix_size)
        xmin = int(nx / 2 - lims)
        xmax = int(nx / 2 + lims)
        ymin = int(ny / 2 - lims)
        ymax = int(ny / 2 + lims)
        bound = np.amax(np.abs(img._data[xmin:xmax, ymin:ymax]))
        order = int(np.floor(np.log10(bound)))
        bound = np.round(bound, -1 * order) / 2

    img.show_colorscale(cmap=cmap, stretch="linear", vmin=-bound, vmax=bound, smooth=1)

    img.recenter(ra, dec, radius=radius / 60.0)
    img.ax.tick_params(axis="both", which="both", direction="in")

    matplotlib.rcParams["lines.linewidth"] = 3.0
    img.add_scalebar(
        0.5 / 60.0, '30"', color="black"
    )  # Adds a 30 arcsec scalebar to the image

    matplotlib.rcParams["lines.linewidth"] = 2.0

    img.add_beam(
        major=120.0 / 3600.0, minor=120.0 / 3600.0, angle=0
    )  # TODO: For now hard-coded to M2 beam but may want some flexibility later
    img.beam.set_color("white")
    img.beam.set_edgecolor("green")
    img.beam.set_facecolor("white")
    img.beam.set_corner("bottom left")

    img.show_markers(
        ra,
        dec,
        facecolor="black",
        edgecolor=None,
        marker="+",
        s=50,
        linewidths=2,
        alpha=0.5,
    )

    img.add_colorbar("right")
    img.colorbar.set_width(0.12)
    img.colorbar.set_axis_label_text(cbar_label)

    if ncontours:
        matplotlib.rcParams["lines.linewidth"] = 0.5
        clevels = np.linspace(-bound, bound, ncontours)
        img.show_contour(
            fits_path,
            colors="gray",
            levels=clevels,
            returnlevels=True,
            convention="calabretta",
            smooth=3,
        )

    if plot_r:  # TODO: Allow passing of r500 values, make this a subfunction
        if "a10" in cfg["model"]["structures"].keys():
            mod_type = "a10"
        elif "ea10" in cfg["model"]["structures"].keys():
            mod_type = "ea10"
        else:
            raise ModelError("For R500, must have structure type A10 or EA10")

        for i in range(len(results.structures)):
            if str(results.structures[i].name) == mod_type:
                break

        for parameter in results.structures[i].parameters:
            if str(parameter.name.lower()) == "m500":
                m500 = parameter.val
                break

        z = float(cfg["constants"]["z"])
        nz = get_nz(z)

        r500 = (m500 / (4.00 * np.pi / 3.00) / 5.00e02 / nz) ** (1.00 / 3.00)
        da = get_da(z)
        r500 /= da
        if plot_r == "rs":
            r500 /= float(
                cfg["model"]["structures"][mod_type]["parameters"]["c500"]["value"]
            )  # Convert to rs
        img.show_circles(
            ra, dec, radius=r500 / 3600, coords_frame="world", color="green"
        )

    return img